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We present a general technique, called decoding with multipliers, that can be
used to decode any linear code. The technique is applied to the (48,24) quadratic
residue code and yields the first known practical decoding algorithm for this

powerful code.

I. Introduction

It is widely believed that the next breakthrough in
coding technology for a wideband Gaussian channel will
come from soft-decision decoding of block codes (Ref. 1).
Chase (Refs. 1 and 2) has devised an algorithm which
allows reasonably efficient soft-decision decoding of any
block code for which a hard-decision (i.e., binary) decod-
ing algorithm is known, provided the block length is not
too large. This motivates us to find good binary decoding
algorithms for powerful short block codes. In this paper
we shall describe a technique which is well-suited for
this task; it is called decoding with multipliers.

In Section II, we define the notion of multiplier; in
Section 111, we give a general decoding algorithm; and in
Section IV we devise a specific algorithm for decoding
the powerful (48,24) quadratic residue code—a code
whose performance on a Gaussian channel is likely to be
very good.
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Il. Information Sets and Multipliers

Consider a set of j coordinates of an (n,k) linear code C
over GF(q). Let X be the set of all distinct j-tuples which
appear in these coordinates in at least one of the code-
words of C. Linearity guarantees that

[ X|=a

for some s, 0< s <j, and establishes a many (=¢**) to
one mapping

¢:C—> X

Clearly, given any codeword c¢ the corresponding j-tuple
is easily found. Conversely, given any j-tuple of X the g**
codewords which are its preimages under ¢ can be con-
structed by means of linear algebra.

Since C has g* codewords, | X| < ¢* and so s <k, inde-

pendent of j. When k = s <j, the j coordinates are said
to constitute an information set for the code since any

43



codeword can be uniquely determined from its values at
these § coordinates. All linear codes have information sets
of size j = k.

We associate with any subset J of the numbers 1,...,n
its incidence vector m, i.e.

1if ie]

0 otherwise

for 1 < i < n. We shall call such a vector a multiplier. For
decoding purposes we shall usually be interested in multi-
pliers which specify an information set of the code under
consideration; they will be called proper multipliers.

I1l. Decoding with Multipliers

Let C be an (nk) linear code over GF(q), which is
capable of correcting all patterns of e or fewer errors,
ie., one whose minimum distance d satisfies d > 2e + 1.
Let M = {m,,m,, ... ,my} be a collection of N multipliers
for C with the property that for each e-tuple of codeword
coordinates there is at least one m;eM which is zero at
each of these coordinates. Then we can use M to decode
C as follows:

Given a received vector y = (y,, .. .,J,)—we assume it
is a codeword which has suffered <e errors—for each
meM we form the vector m X y which is defined by

(m>y), 0 ifm; =0

Let us temporarily assume the multipliers meM are all
proper. This means that the vector m X y can be uniquely
extended to a codeword of C. If the vector y contains at
most e errors, then by the property of M cited above,
at least one of these codewords will be the one trans-
mitted. Thus if we compare y to each of the N (not neces-
sarily distinct) generated codewords, the one closest to y
will be the one sent,

If some or all of the multipliers are improper, the
decoding procedure is similar, except that in general it
will be possible to extend the vectors m X y to codewords
in several ways: if m is a multiplier with k —s =1 (we
say m has defect 1), this extension can be done in g* ways.
Thus if M contains N; multipliers of defect 4, then the
decoding process will generate N, + gN, + g2N, + ...
codewords, each of which must be compared to the
received vector y.
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In the next section we will apply these general con-
siderations to the (48,24) quadratic residue code.

IV. Multipliers for the (48,24) Quadratic
Residue Code

The (n.k) = (48,24) quadratic residue code over GF(2)
has minimum distance 12 and so can be used to correct
e = 5 errors. We would like to find a minimal set of multi-
pliers for this code. Since all 5-tuples of coordinates from
1,...,48 must be covered by 0s in some multiplier, in
order to minimize | M| we want each multiplier to have
as many s as possible. On the other hand, we would like
the multipliers to be proper; this implies that each multi-
plier must have at least k = 24 nonzero entries. Let us
assume then, for the time being, that each multiplier has
24 1’s and 24 0’s. Thus we have the combinatorial prob-
lem of covering all 5-tuples from 1,...,48 with 24-tuples
in such a way as to use the least possible number of
24-tuples.

While the answer to the above problem is unknown,
there is a general result, due to Schonheim (Ref. 3), which
provides lower bounds for such questions. In this case,
Schonheim tells us that we need at least 62 such 24-tuples.
On the other hand, as we shall see, a covering which uses
63 sets is possible. So

63 > min|M | > 62

In terms of decoding effort there is little to choose be-
tween 63 and 62 and since there is no guarantee that 62 is
even possible, we would be quite content with |M | = 63.

A set M of 63 multipliers, whose zeros cover every set
of 5 coordinates from 1,... 48, is given by the nonzero
codewords of a binary (48,6) punctured Solomon-Stiffler
(Ref. 4) code. Given any 5 coordinates, there are at most
2% = 32 distinct 5-tuples appearing in these coordinates in
the codewords and, by linearity, each 5-tuple which does
occur appears equally often. Since this code has dimen-
sion k = 6 this means that, in particular, 00000 occurs at
least twice, and so there is at least one nonzero codeword
which has 0’s in the desired 5 coordinates. So the nonzero
codewords do cover the Os properly. There are 60 code-
words of weight 24 and 3 codewords of weight 32 in this
collection. Furthermore, 8 1’s can be removed from each
of the words of weight 32 without sacrificing the property
that they specify information sets for the (48,24) quad-
ratic residue code. Unfortunately, however, in the repre-
sentations of the Solomon-Stiffler code so far tested not
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all the words of weight 24 yield proper multipliers for the
quadratic residue code. In fact, for the best case yet
found, of the 63 multipliers so obtained, 37 are proper,
24 have defect 1, and 2 have defect 2. Thus while M = 63
there could be as many as 37 4+ 2.24 4+ 4.2 = 93 code-
words to be compared with y in the decoding process.
Since any of the 48! coordinate permutations of the
Solomon-Stiffler code also has the desired 0’s covering
property, we conjecture that this bound of 93 can be
reduced-—but not, of course, below 62.

The complexity of the decoding process is at worst
linear in the number of codewords to be compared with
Yy, s0 93 (vs 62) represents less than a factor of 2 in decod-
ing time. Thus, if no better multiplier set is discovered,
it would be feasible to decode the (48,24) quadratic
residue code using this set M.

For definiteness, this multiplier set and the parity check
matrix for the (48,24) quadratic residue code are given
in the Appendix.
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Appendix

The multiplier set discussed above consists of all the  Solomon-Stiffler (48,6) code. Since this code is linear it

nonzero codewords of a particular representation of the  suffices to list generators for the code. These are:

g, = 110100 011011 101111 111010 111000 101110 110101 101111
g. = 101111 111110 011100 011111 101111 010011 001010 011101
gs = 010110 001010 100100 000100 111111 111011 010101 010001
g, = 010111 111000 001001 101101 101100 111000 000011 100110
gs = 010101 001101 111001 010110 010101 001111 000010 000111
gs = 000110 010010 111000 000111 100010 101101 111010 101011

The (48,24) quadratic residue code is cyclic with an  matrix is a cyclic 47 X 47 matrix with one extra row and

overall parity check adjoined. Thus its parity check  column added:

46

[ 110010 100100 110110 011000 100000 000000 000000 000000 ]
011001 010010 011011 001100 010000 0C0O000 000000 000000

001010 010011 011001 100010 000000 000000 000CO0 000110
100101 001001 101100 110001 000000 0C0000 000000 000010
| 111111 111111 111111 111111 111111 111111 111111 111111 |
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